Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; : 108595, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641014

RESUMO

Malathion is an organophosphate pesticide used in agriculture and control of the Aedes aegypti mosquito. As previous reports have indicated the potential of malathion to compromise testosterone production in in vivo models, the objective of this study was to elucidate the mechanisms underlying the impairment of Leydig cell function, considering its critical role in male reproductive function. To this end, murine Leydig TM3 cells were exposed to concentrations of 1, 10, 100 or 1000µM malathion for 24hours for evaluation of the compound on cell viability. Subsequently, concentrations of 1, 10, and 100µM malathion were employed for a 24-hour period to assess testosterone biosynthesis, levels of cytokines IL-1ß, IL-6, IL-10, and TNF-α, as well as the redox profile. Malathion exerted a concentration-dependent impact on cell viability. Notably, the lower concentrations of malathion (1 and 10µM) were found to impair testosterone biosynthesis in TM3 cells. While there were changes in IL-1 and TNF-α levels at specific concentrations, no direct correlation with altered hormone production was established. Our investigation revealed that varied malathion concentrations induced oxidative stress by increase in superoxide anion and a compensatory rise in antioxidants. In conclusion, the observed changes in the oxidative profile of TM3 cells were linked to functional impairment, evidenced by reduced testosterone biosynthesis at lower malathion concentrations.

2.
Environ Sci Pollut Res Int ; 31(14): 21721-21736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393561

RESUMO

Malathion serves as a pivotal pesticide in agriculture and the management of the Aedes aegypti mosquito. Despite its widespread use, there is a notable absence of studies elucidating the mechanisms through which malathion may affect the female reproductive system. Consequently, the objective of this investigation was to assess whether exposing juvenile female rats to low doses of malathion during the juvenile and peripubertal periods could compromise pubertal onset, estradiol levels, and the integrity of the ovaries and uterus while also examining the underlying mechanisms of damage. To achieve this, thirty juvenile female rats were subjected to either a vehicle or malathion (10 mg/kg or 50 mg/kg) between postnatal days 22 and 60, with subsequent verification of pubertal onset. Upon completion of the exposure period, blood samples were collected for estradiol assessment. The ovaries and uterus were then examined to evaluate histological integrity, oxidative stress, and the expression of genes associated with cell proliferation, antiapoptotic responses, and endocrine pathways. Although estradiol levels and pubertal onset remained unaffected, exposure to malathion compromised the integrity and morphometry of the ovaries and uterus. This was evidenced by altered oxidative profiles and changes in the expression of genes regulating the cell cycle, anti-apoptotic processes, and endocrine pathways. Our findings underscore the role of malathion in inducing cell proliferation, promoting cell survival, and causing oxidative damage to the female reproductive system in rats exposed during peripubertal periods.


Assuntos
Inseticidas , Malation , Ratos , Feminino , Animais , Malation/toxicidade , Inseticidas/toxicidade , Ovário , Estresse Oxidativo , Estradiol , Útero , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...